Multiple Attribute Aware Personalized Ranking
نویسندگان
چکیده
Personalized ranking is a typical task of recommender systems. It can provide a set of items for specific user and help recommender systems more correctly direct each item to its user. Recently, as the dramatically increasing social media, an entity, i.e., user and item, usually associates with multiple kinds of characterized information, e.g., explicit ratings, implicit feedbacks, and multi-type attributes (such as age, sex, occupation, or posts of user). Intuitively, comprehensively considering these information, we can obtain better personalized ranking results. However, most conventional methods only take collaborative information (explicit ratings or implicit feedbacks) or single type attributes into account. In this work, we investigate how to combine multiple attribute and collaborative information to learn the latent factors for entities and the attribute-aware mappings. As a result, we propose a novel Multipleattribute-aware Bayesian Personalized Ranking model, Maa-BPR, for personalized ranking, which can learn reliable latent factors for entities as well as effective mappings for multiple attribute. The experimental results show that, compared with the state-of-the-art methods, Maa-BPR not only provides better ranking performance, but also is robust to new entities and the incomplete attributes.
منابع مشابه
A New Balancing and Ranking Method based on Hesitant Fuzzy Sets for Solving Decision-making Problems under Uncertainty
The purpose of this paper is to extend a new balancing and ranking method to handle uncertainty for a multiple attribute analysis under a hesitant fuzzy environment. The presented hesitant fuzzy balancing and ranking (HF-BR) method does not require attributes’ weights through the process of multiple attribute decision making (MADM) under hesitant conditions. For the rating of possible alternati...
متن کاملHorizontal representation of a hesitant fuzzy set and its application to multiple attribute decision making
The main aim of this paper is to present a novel method for ranking hesitant fuzzy sets (HFSs) based on transforming HFSs into fuzzy sets (FSs). The idea behind the method is an interesting HFS decomposition which is referred here to as the horizontal representation in the current study. To show the validity of the proposed ranking method, we apply it to solve a multi-attribute decision-making ...
متن کاملMultiple attribute decision making with triangular intuitionistic fuzzy numbers based on zero-sum game approach
For many decision problems with uncertainty, triangular intuitionistic fuzzy number is a useful tool in expressing ill-known quantities. This paper develops a novel decision method based on zero-sum game for multiple attribute decision making problems where the attribute values take the form of triangular intuitionistic fuzzy numbers and the attribute weights are unknown. First, a new value ind...
متن کاملMultiple attribute group decision making with linguistic variables and complete unknown weight information
Interval type-2 fuzzy sets, each of which is characterized by the footprint of uncertainty, are a very useful means to depict the linguistic information in the process of decision making. In this article, we investigate the group decision making problems in which all the linguistic information provided by the decision makers is expressed as interval type-2 fuzzy decision matrices where each of ...
متن کاملRankMBPR: Rank-Aware Mutual Bayesian Personalized Ranking for Item Recommendation
Previous works indicated that pairwise methods are stateofthe-art approaches to fit users’ taste from implicit feedback. In this paper, we argue that constructing item pairwise samples for a fixed user is insufficient, because taste differences between two users with respect to a same item can not be explicitly distinguished. Moreover, the rank position of positive items are not used as a metri...
متن کامل